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Heat transfer from a planar surface to a fluid in 
laminar flow. An experimental and computational 

study 

J. F. T. PITTMAN, J. F. RICHARDSON, A. 0. SHARIF and C. P. SHERRARDt 

Department of Chemical Engineering, University College, Swansea SA2 SPP, U.K. 

Abstract-An experimental study has been made of heat transfer from a flat plate with nominally uniform 
surface heat flux aligned parallel to laminar flows of Newtonian and shear thinning liquids, for a range of 
plate Reynolds numbers (3&2000) and fluid Prandtl numbers (50-400). Finite element solutions of the 
coupled flow and conjugate heat transfer problem have been obtained, using a recent form of the SUPG 
formulation for isoparametric biquadratic finite elements, extended to take account of variable physical 
properties. Close agreement with experimental plate surface temperatures provides confidence in both our 

experimental and numerical techniques. 

1. INTRODUCTION 

THE SUBJECT of the paper is an experimental and 

computational project on heat transfer from surfaces 
immersed in fluids in laminar flow. The emphasis is 
on liquids of high viscosity, some with non-New- 
tonian flow properties, many of which exhibit vari- 

ations of consistency and density with temperature- 
conditions which are relevant in many industrially 
important processes involving polymeric liquids and 
solutions, suspensions and emulsions. The non- 
linearity of the coupled momentum and energy con- 

servation equations which apply in this situation 
renders an analytical treatment impossible, except in 
certain special cases. Fluid consistencies are often 

high, and at the low Reynolds numbers involved the 
boundary layer thickens too rapidly for the classical 
treatment of forced or mixed convection heat transfer 
to be valid; in any case, uncertainties remain in 
boundary layer theory for variable property problems 
such as those with which we are concerned here. 
Additionally, the geometry of the heat transfer sur- 

faces may not be simple, again rendering approximate 
analytic approaches difficult. 

There is thus a well-recognized need for numerical 

methods which are sufficiently powerful and flexible 
to encompass the phenomena and conditions outlined 
above. With the rapidly increasing power-to-cost ratio 

of computers, their use in process analysis and design 
is becoming ever more attractive. The literature, how- 
ever, shows very few instances where numerical solu- 
tions of the present class of problems have been tested 
against careful experimental results. Experimental 
validation is particularly important in view of the 
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frequent absence of a rigorous theoretical basis for 
the numerical techniques required to treat the relevant 

differential equations, which may be highly nonlinear, 

and of mixed type. 
The twin objectives of the present work are there- 

fore, on the one hand, to establish an experimental 
technique for the precise and detailed measurement 

of local heat transfer coefficients, and on the other, 
to compare measurements with numerical predictions 
for a range of conditions. Numerical results are 
obtained using the finite element method, chosen for 

the convenience with which it can be applied to prob- 
lems of irregular and various geometries and the ease 
with which variable physical properties and rheology 

can be taken into account. A brief outline of the 
numerical scheme is included in the present paper, 
and a more detailed account will be given separately. 
In the following sections the development of the exper- 

imental method is described, followed by a brief 
account of the numerical methods. Representative 
results are then compared with numerical predictions 

for heat transfer in forced and mixed convection to 
viscous Newtonian and non-Newtonian liquids. 

By validating experimental and numerical results 
against each other, we establish confidence in an 
experimental technique which can be used to inves- 

tigate heat transfer to a range of materials in a number 
of fairly simple geometries, and a numerical method 
which is applicable to an infinite variety of geometries. 

2. EXPERIMENTAL EQUIPMENT AND 
PROCEDURES 

2.1. Design considerations for the heat transfer element 
Considerations in choosing the design of the heat 

transfer element are as follows. Velocity and tem- 
perature fields should be two-dimensional over the 
main part of the element, so that two-dimensional 
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NOMENCLATURE 

h temperature coefficient for viscosity (or T, local value of surf‘ace tcmpcraturc [K] 
consistency), ( - 11~) dp/d T [K ‘1 u velocity vector [m s ‘1 

C specific heat capacity [J kg ’ K ‘1 4 Cartesian coordinate of velocity [m s ‘1 

f, Cartesian component of the body force % nodal value, at node J, of the icomponent 
[N mm31 of velocity [m s ‘1 

9, acceleration due to gravity, Cartesian -XI distance from leading edge, parallel to 
component [m s-‘1 surface (i.e. in direction of flow) [m] 

/z local value of heat transfer coefficient, .X2 distance perpendicular to surface [ml. 

{ -W~~WO- T,)) 
[W m 

J the Jacobian matrix [m] 
k thermal conductivity [W m-’ Km’] Greek symbols 
L length of surface in the direction of flow /I a large constant, which multiplied by 

[ml viscosity gives the penalty parameter 
m index in equation (10) E specific electrical conductivity [Q ‘1 

N, finite element shape function for node I r boundary of the finite element analysis 
(biquadratic, isoparametric) domain [m] 

Nu,, Nusselt number (local), (h x,)/k ~j shear rate, [O.S i,, ?,,I”’ [s ‘1 
n index in power-law equation for rheology ;‘I, Cartesian rate of deformation tensor, 

P, u;N,,, used in forming the SUPG weight (u,,, f 5.3 1s - ‘I 
function [so ‘1 A penalty parameter [N s m -‘I 

PA approximate pressure provided by the 4 optimal parameter used in forming @ in 
penalty formulation [N m ‘1 the SUPG formulation [m] 

P pressure [N m ‘1 1 “1 optimal parameter used in forming @ in 

q surface heat flux [W m ‘1 the SUPG formulation [m] 

R& ohmic resistance of heat transfer element p viscosity of fluid [N s mm’] 

PI v’o coefficient of consistency in power-law 

Re tube Reynolds number equation for rheology [N sn m ‘1 

Rc, Reynolds number in terms of length of Q, upwinding parameter in the SUPG 
plate surface treatment of the momentum 

Re,, Reynolds number in terms of distance x, conservation equation [s] 
from leading edge P density of fluid [kg m-‘1 

r radial distance from the centre of the tube i’ finite element local coordinate 

[ml ‘1 finite element local coordinate 

3 heat source [W m ‘1 ?I, Cartesian viscous stress tensor [N mm I] 

T temperature [K] X upwinding parameter in the SUPG 

T0 reference temperature in temperature- treatment of the energy conservation 

dependent power-law model [K] equation [s] 

T “PP approach temperature, the uniform fluid R the open domain of the finite element 

temperature upstream of the heated analysis [m’] 

plate [K] 0, the open area of element e [m’]. 

modelling can be used. Computer solution of three- 
dimensional problems is very expensive, and addition- 

ally, the acquisition of experimental data defining 
three-dimensional fields is laborious. Although the 
computer simulations are not limited to particular 
geometries, a simple geometry is in practice desirable, 
if only because it permits a comparison of the results 
with those obtained from approximate analytical 
solutions. Furthermore, it should be possible to 
acquire experimental heat transfer results rapidly. The 
element should have low thermal mass, equilibrating 
quickly, and heat transfer coefficients should be 
obtainable as directly as possible, using relatively few 
measurements. 

These considerations lead to the choice of a flat 
plate element, which provides a geometry that has 

frequently been used before in investigations of 
boundary layer theory. There are two idealized ver- 
sions--constant surface-temperature, and constant 
surface-heat-flux plates-and the relative merits of 
these are now reviewed. The previous investigations 
which are cited have been selected because of their 
particular relevance or recent date. 

Constant surface-temperature elements have been 
constructed using copper or aluminium plates backed 
by a number of heating elements, controlled sep- 
arately in response to the output of thermocouples set 
into the metal plate. For these elements it is difficult 
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to relate electrical power dissipated to local heat flux 
from the plate surface, because of the finite size of the 

heating elements, the occurrence of conduction from 
one part of the metal plate to another, and significant 
heat losses from the back and edges of the elements. 
Most workers have calculated surface heat fluxes from 
the gradients of temperature profiles measured using 
fine probes situated in the boundary layer close to the 
plate surface. As a means of obtaining heat transfer 

coefficients, this procedure is not only indirect and 
laborious, but is of limited accuracy because of the 
difficulty of extrapolating the temperature profile 
right up to the surface. Constant temperature plates, 

with their heaters and insulated backing, tend to be 

rather massive, and Ramachandran et al. [I], who 
used a large (300 x 1040 mm) plate, mention an equi- 
librium time of 4 h ; Reilly et al. [2] (1.50 x 300 mm) 
mention times up to 25 min. 

In constant heat-flux plates, electric heating 
elements have provided the heat transfer surfaces. In 
work by Richardson and co-workers [3], the heating 
element was in the form of a straight wire, a wire 
wound on to a former, or a foil glued to a former. At 
steady state all the electrical power passed from the 
surface into the fluid, and an average surface tem- 
perature was very conveniently obtained from the 
resistance of the element; the corresponding power 
dissipation could be determined from measured values 
of the applied potential difference. The heat transfer 
coefficient was then obtained from the slope of the 
linear plot of (applied voltage)’ vs surface tempera- 
ture. The method thus yields average heat transfer 
coefficients over the surface. 

In an alternative arrangement, which enables local 
heat transfer coefficients to be obtained, the heating 
element is in the form of a foil or shim of high resist- 
ance metal such as stainless steel, the local tem- 
peratures of which are measured with thermocouples. 
Sammakia et al. [4] used this construction, and used 
a probe to give boundary-layer temperature profiles. 
Siebers et al. [5] sandwiched thermocouples between 
stainless steel strip heaters and their substrate, insu- 
lating them from the heaters by mica sheet. Dale and 
Emery [6] ensured direct measurement of the heater 
temperatures by spot welding thermocouples to the 
back of the stainless steel shim. Sammakia’s element 
was double-sided, with heat produced symmetrically 
about a mid-plane, thus eliminating the problem of 
back heat-losses and the need for bulky insulation. 

Elements of the uniform heat-flux type can thus 
be constructed with low thermal mass. They provide 
values of local heat transfer coefficients from directly 
measured local surface temperatures of the plate and 
a knowledge of the electrical power dissipation; for 
a properly designed element the latter requires no 
correction for stray heat losses. This is the design basis 
for the element used in the present work. 

2.2. Construction of the heat transfer coefJicient 
The element was formed from a thin, flat sheet of 

phenol-formaldehyde (Tufnol) resin covered on both 

faces by a continuous single strip of stainless steel foil. 

Heavy current leads and fine potential tappings were 

connected to the sides of the stainless steel strip, and a 
number of chromel-alumel thermocouples were spot- 
welded to the back of the foil on one face. The element 
was mounted vertically, on stainless steel rods, and the 
overall arrangement is shown in Fig. 1. Fabrication 

details were as follows. 
The Tufnol plate was prepared with 2 mm diameter 

holes drilled through it at the thermocouple locations, 
and with grooves running horizontally from these to 

the plate edge. A series of 1 mm holes on a 5 mm 
grid were also drilled, to permit the escape of excess 

adhesive when fixing the foil to the test face. The 

precision stainless steel foil (type 302, thickness 0.05 
mm* 2%, resistivity approximately 90 x lo-’ D mm, 

Goodfellow Metals Ltd) was first fixed over the test 
face using the epoxy resin (Araldite type 2004, Ciba 
Geigy Ltd). The thermocouple wires, 0.2 mm in diam- 

eter, which were spot-welded through the holes to the 
back of the foil, were led along the grooves to the edge 

of the element. The holes and grooves were then filled 
with an electronics resin (Araldite CY 130l/HY 1300). 
Finally, the foil was stuck to the reverse face of the 
element to give a ‘sandwich’ 3 mm thick. The current 

and potential leads were already attached to the foil 
before it was fixed to the Tufnol. This was done by 

crimping the leads in an aluminium tube which was 
then spot-welded to the foil at a large number of 
points. 

With care it was possible to produce an element 

with flat, smooth surfaces and a neat, square leading 

edge. For forced and mixed convection heat-transfer 

experiments the element was mounted in a vertical 
section of glass QVF tube, of 104 mm internal diam- 

eter through which liquid was pumped in an upwards 
direction. The electric current flowed from side to side 
through the foil in a direction at right-angles to the 
fluid streamlines. The rods supporting the element 

passed through an aluminium collar held between 
sections of QVF tube, and the electrical leads and 
thermocouple wires were led out at this point. 

The dimensions chosen for the element represent a 

compromise between several requirements. A wide, 
low element will maximize its electrical resistance, 

avoid the need for too-heavy heating currents, and 
facilitate accurate potential-drop measurements. 
However, the width is limited by the diameter of the 
containing tube, and the height should be as great 
as possible to maximize the range of plate Reynolds 
numbers attainable. In the final design the height is 

about 0.9-times the tube internal diameter, so, to 
maintain laminar flow, experiments were limited to a 
plate Reynolds number of about 2 x 103. On the basis 
of the predicted boundary layer thicknesses, and tak- 
ing note of the work of Hansen [7] and of Elias [8], it 
was believed that, with the chosen width of element, 
essentially two-dimensional heat transfer conditions 
would be achieved over a central region. This was 
later confirmed by measurement. With an element 
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milled to 2.5 thick 

FIG. I. Heat transfer element and supporting structure 

width of 79 mm, some interaction with the tube walls 
is inevitable, but again this was shown not to disturb 
the two-dimensional nature of the heat transfer over 
the central, test section of the plate. 

The layout of the thermocouples on the test face of 
the element requires brief comment. The main ther- 
mocouples are off-set slightly, one behind the other, 
near the vertical centre line of the element. This is to 
prevent any flow disturbance resulting from the slight 
surface irregularities caused by the spot-welding from 
affecting downstream thermocouples. Two additional 
thermocouples are positioned 20.5 mm from the 
element centreline to provide a direct check that the 
surf&e heat transfer is two-dimensional. 

In order to record bulk fluid temperatures a ther- 
mocouple was positioned level with the element, but 
sufficiently far from its surface to be unaffected by the 
thermal boundary layer. 

2.3. Power circuit: electrical measurements and culi- 

brations 
In preliminary experiments where DC current was 

supplied to the heat transfer element, it was found 
that the surface thermocouple outputs changed by up 
to 200 PV on reversing the polarity of the supply. 
This change was comparable with the potential drop 
expected over the length of foil covered by the ther- 
mocouple spot weld, and reliable results could be 
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2. Electrical resistances of the heat transfer element as a function of temperature. FIG. 

obtained only by averaging the thermocouple outputs 
for the two directions of current flow. This, however, 
was a cumbersome procedure, and the DC supply was 
replaced by AC obtained from the mains via a step 
down transformer and Variac. The output from the 
ungrounded thermocouples, relative to an ice 
junction, was then measured with a precision of 1 PV 
using a Solartron 7043 multimeter, which was capable 
of integrating out the AC component of the signal. 
Thermocouples were individually calibrated after con- 
struction of the heat transfer element. 

The potential drop across the element was mea- 
sured using a Solatron LM 1240 multimeter. The 
element resistance was initially determined as a func- 
tion of temperature, and the results are shown in Fig. 
2. An experiment was also carried out to test for 
possible current by-passing when the element is 
immersed in a conducting liquid. Figure 2 shows 
resistances measured with the element immersed in 
distilled water, specific conductivity E = 1.3 a-‘, and 
in a salt solution, E = 4.7 m0-‘. The points lie indis- 
tinguishably on the same resistance-temperature line, 
and it is therefore concluded that no significant cur- 
rent by-passing occurs. 

2.4. Liquid circulation, flowrates and laser anemometry 
Liquid was pumped, by means of a single stage 

centrifugal pump, via a flow straightener and dis- 
tributor, up the vertical column (QVF-104 mm 
diameter by 3 m tall) containing the heat transfer 
element and thence back to the holding tank, as shown 
in Fig. 3. The tank held 5670 x 10e3 n? of liquid, 
with the temperature regulated by adjustment of the 
flow of cooling water through coils immersed in the 
tank. The flow rate of the test liquid was controlled 
by adjustment of the valves in the main flow circuit 
and in the by-pass line. Both rotameters and an elec- 
tromagnetic flowmeter were incorporated in the Bow 
loop. The electromagnetic flowmeter was initially cali- 
brated against the rotameters using water, and was 

subsequently employed as the principal means ofcon- 
trolling and recording liquid flowrates during the heat 
transfer experiments. 

The heat transfer element was mounted vertically 
across a diameter of the column so that its surface 
was parallel to the direction of flow. It could be raised 
or lowered over a span of 0.27 m. 

Although the flow-straightener and distributor pro- 
duced a reasonably uniform flow. the velocity profile 
was not quite flat, and it was therefore directly mea- 
sured in the neighbourhood of the element by laser 
Doppler anemometry. The equipment (Dantec Ltd) 
incorporated a 35 mW helium-neon laser, and was 
used in forward-scatter mode. Traversing was 
achieved by mounting the laser and emitting optics 
on a rigid bench held in a heavy compound vice. The 
probe element of the system was approximately 1 mm 
across the largest dimension. No special seeding of 
the liquids was necessary. Further details of the use 
of the laser anemometer are provided elsewhere in ref. 
[9]. Typical velocity profiles are shown in Fig. 4. 

2.5. Experimental liquids and their characterization 
2.5.1. Aqueous glycerol. Two solutions of about 

65% wt glycerol were used. Viscosities were measured 
over the range 2@-4O”C with U-tube viscometers, and 
densities were obtained using a specific gravity bottle. 
Viscosity was well represented by an exponential tem- 
perature dependence, and volume expansivity by a 
linear one. Results are summarized in Table 1. Data 
for thermal conductivity and its (linear) temperature 
dependence were taken from the work of Bates [lo], 
whilst specific heats were obtained from the results of 
Bridgeman [ 111. 

2.52. Aqueous carboxymethyl cellulose solutions. 
Solutions of approximately 1.3% wt sodium car- 
boxymethyl cellulose (Grade MR, Hercules Powder 
Co.) were used. Values of physical properties of CMC 
solutions have been reported by several workers ]2, 
12, 131 and, on the basis of this work, the relevant 



338 J. F. T. PITTMAN et ul. 

i ( 

16 1, 
Frc;. 3. Liquid flow circuit-l. Column; 2. heat transfer element; 3. element support; 4. flow straightener; 
5. flow distributor; 6. single-stage centrifugal pump ; 7. rotameters for test fluid ; 8. electromagnetic 
Rowmeter; 9. manifold ; 10. alternative charging tank; 11. holding tank; 12. cooling coils; 13. cooling 
water rotameter; 14. drainage cocks ; 15. charging pump; 16. storage tank : 17. safety valve ; 18. filter; 19. 

level sight glass. 

physical properties, other than rheology, have been 
taken as those of water at the appropriate tempera- 
ture. Rheological properties were measured with an 

R 14 Weissenberg rheometer equipped with a Mooney 
combined truncated cone/concentric cylinder system 
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FIG. 4. Typical approach velocity profiles for several experi- 
ments; data points from laser doppler anemometry. 

enclosed in a thermostatically controlled air bath. 
Results, interpreted in terms of the power-law model. 
are given in Table 2, from which it will be seen that 

deviations from Newtonian behaviour are very small. 
2.5.3. Aqueous Cmbopolsolutions. Four solutions of 

carboxy polyethylene (Goodrich Chemical Co.. Grade 
M) were used, and again the physical properties, other 
than rheology, which was determined as for CMC. 
were taken to be the same as those of water. Rhco- 
logical properties are summarized in Table 3, from 
which it is seen that the solutions are shear-thinning, 

following the power-law with an exponent ranging 
from 0.53 to 0.57. 

2.6. Experimental procedurr 
Liquid was circulated through the equipment at the 

desired rate and ample time was allowed for steady- 

Table 1. Summary of the physical properties of 67.5 and 
63.9% aqueous glycerol solutions 

Physical Property 67.5% 63.9% 
T = 2O’.C Glycerol Glycerol 

k(Wm ‘Km’) 0.360 0.371 
Temp.coefl.(Wm-‘K ‘)x10’ - 0.250 -0.320 
C(J kg-’ K ‘) 3040 3098 

P (kg mm’) 1174 1165 
Temp. co&. (kg mm ’ K ‘) -0.550 -0.563 
p(Nsmm2) 0.0177 0.0139 
Temp. coeff. b (K- ‘), exponential 0.0430 0.0415 
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Table 2. Summary of rheological data for the aqueous CMC solutions 

Fluid Temp. (“C) po(N s” mm’) n 

No. 1 CMC after heat transfer expts 

No. 1 CMC before heat transfer expts 

No. 2 CMC 

state temperature conditions to be established before 

any experimental measurements were made. This 

amounted to about 30 min from initial start-up, or 
about 15 min following a change of circulation rate. 
Liquids were replaced when they had become con- 

taminated, and, with those showing shear-degradation 
(Carbopol solutions), samples were taken at regular 
intervals and their rheology checked. 

Before power was supplied to the element, ther- 
mocouple readings were taken, in order, starting from 
the leading edge, and finally the thermocouple in the 
bulk liquid was read. When readings had become 
stable, velocity profiles were measured using the LDA 

method. Power was then supplied to the element and, 
after equilibration, the outputs of the element ther- 
mocouples were again measured. The rise in tem- 
perature of the plate surface was obtained from the 
difference in the two readings (before and after power 
was supplied) for each thermocouple. The bulk tem- 
perature of the liquid was again measured by the 
thermocouple situated close to the heat transfer sur- 
face. 

The total power input to the element was calculated 
from the applied voltage and the resistance of the 
element at the mean temperature given by the plate 
thermocouple readings. 

Experiments were carried out with three Newtoniap 
liquids (two aqueous glycerol solutions and an aque- 

ous CMC solution) and with two shear-thinning 
liquids (aqueous Carbopol solutions). All of the 
experiments were carried out in the laminar flow 
regime ; the Reynolds numbers with respect to both 
the tube wall (Re) and the element (Re,) did not exceed 
2000, and in many cases were substantially lower. 
Under these conditions the boundary layer is thick- 

19.3 0.0624 0.985 
25.9 0.0516 0.974 
27.5 0.0446 1.002 
31.2 0.0395 0.998 

23.1 0.0568 1.010 
31.3 0.0405 0.987 

21.9 0.0640 1.007 
24.5 0.0616 1.001 
26.5 0.0553 0.995 
29.3 0.0484 0.985 
30.6 0.0476 0.976 

ening very rapidly as the fluid flows over the surface, 

and the assumptions in the Prandtl boundary layer 

are no longer applicable. 

3. MATHEMATICAL MODEL AND FINITE 

ELEMENT TECHNIQUES 

3.1. The mathematical model 

We model the conjugate problem of flow and heat 

transfer in the process liquid, coupled with electrical 
heat generation and conduction in the flat plate. 
Account is taken of the dependence of viscosity on 
shear rate and temperature, and the thermal prop- 
erties are also taken to be temperature-dependent. The 

primary mode of heat transfer is by forced convection, 
but buoyancy effects are also included so that, where 
necessary, mixed forced and free convection is mod- 
elled. 

A steady two-dimensional model is set upthe 
domain of the analysis being in a plane perpendicular 

to the plate, and lying along the flow direction. 
The governing conservation equations for momen- 

tum, mass and energy are thus written in Cartesian 
coordinates as : 

P,U,, = -P.,S_7,,.r +f; (1) 

Uj,, = 0 (2) 

pCu,T., = kT.,,+S (3) 

where i, j both take the values 1,2 and the summation 
convention applies. 

Viscous stresses are given by : 

ry = P Yi, (4) 

Table 3. Summary of rheological data for Nos. 5,6,7 and 8 Carbopol solutions 
_. 

p0 (N s” m-‘) 
Fluid T” = 2O’C b (Km’) n at r, = 20°C pH 

No. 5 Carbopol 0.425 0.0243 0.528 7.0 
No. 6 Carbopol 0.362 0.0197 0.537 7.1 
No. 7 Carbopol 0.322 0.0180 0.554 7.1 
No. 8 Carbopol 0.281 0.0211 0.572 7.1 
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FIG. 5. Domain of the finite element analysis and boundary conditions (plate thickness not shown to scale), 

with viscosity expressed in terms of a temperature- 
dependent power-law equation 

Jr = PLl,P 1 e-M?‘- 7;,f. (5) 

The body force term represents buoyancy and is writ- 
ten as 

.fi = [P(T) - P(T,,,)lLc (6) 
where p(T) is the density at the local temperature, T, 

and p( 7’,+,P) is the value at the approach tem~rature, 
rdPP. In the continuity equation (2), density is, 
however, taken as constant. Elsewhere, density, 
together with thermal conductivity and specific heat, 
are expressed as linear functions of temperature. 

The domain of the analysis is illustrated in Fig. 5 ; 
it extends 45 mm upstream and 60 mm downstream 
from the plate. In the upstream and downstream 
regions the lower boundary of the domain lies along 
the symmetry plane of the plate. The domain thus 
includes the half-thickness of the plate, visible over 
the central 90 mm of the lower part of the domain. 
Here, the cross-section of the metal shim, which acts 
as the electrical heating element, is represented, but 
not the Tufnol substrate, wherein thermal conduction 
is negligible. The height of the domain extends to a 
distance equal to the radius of the pipe in which the 
element is mounted. 

The boundary conditions of the problem are also 
shown in Fig. 5. Liquid enters in parallel flow across 
the upstream boundary, with a specified velocity pro- 
file U,(S), determined by laser anemometry, and at a 
specified uniform approach temperature, TaPP. On the 
upper boundary, corresponding to the pipe wall, the 
no-slip condition is specified for the flow, together 
with zero heat flux across the surface. On the leading 
and trailing edges of the plate, conditions of no-siip 

and zero normal heat flux are applied again, whilst 
the no-slip condition alone is applied to the upper 
surface of the metal shim (the actual plate surface). 
On the lower surface of the shim, zero normal heat flux 
is specified, corresponding to zero heat conduction to 
or from the Tufnol substrate. On the lower domain 
boundary, upstream and downstream of the plate, 
there is symmetry, and corresponding boundary con- 
ditions are applied. On the exit boundary, conditions 
corresponding to kinematically and thermally 
developed flow are used. Whilst these will probably 
not apply strictly, their influence on the velocity and 
temperature fields is exerted over only a short 
upstream distance, and there is no practical alternative 
to their use. The downstream 60 mm section of the 
domain has been chosen to be su~ciently long to 
ensure that heat transfer near the plate is unaffected 
by any of the approximations involved in the down- 
stream boundary conditions. 

Equations (l)--(3), with equations (4)-(6) etc., are 
applied over the whole domain. Appropriate physical 
properties are assigned in the regions representing the 
flow area and the steel shim. In the steel, the source 
term, $ in the energy equation is assigned a value 
representing the rate of electrical heat generation, and 
the flow boundary conditions ensure that zero vel- 
ocities are maintained in the metal. In the flow region, 
the source term represents heating due to viscous 
energy dissipation 

3 = ~L[(~,.I)~+f~2.*)2+2(~I.?+~2.,)21~ (7) 

The governing equations provide a detailed rep- 
resentation of the physics, and form a coupled, non- 
linear system, which is of mixed hyperbolic~lliptic 
type as a result of the important convective transfer 
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terms ; the correct solution of this system presents a 
significant challenge. 

3.2. Finite element techniques 
In this Section, an outline is given of the finite 

element techniques used to solve the mathematical 
model that has been described. Some novel aspects 
are highlighted, and a fuller account will be given 

elsewhere [ 141. 
The incompressible flow problem is solved using 

the Reduced Integration Penalty formulation, which 
removes pressure as a primary unknown using the 

substitution 

PA = -Au,., 

p,-+pasA+cr:. 

To maintain uniform continuity enforcement, we 

introduce a viscosity-dependent penalty parameter 

]I 51 

where p is a large constant, typically 10” in 64 bit 
calculations. 

An important consideration in the present work 
is the proper treatment of momentum and energy 
transport involving a significant convective compon- 

ent, represented by the first derivative terms in equa- 
tions (1) and (3). It is well known that when mesh 

Reynolds or Peclet numbers are not small, <O(l), 
the classical finite element Galerkin method can lead 

to worthless, oscillatory results. One of the most 
effective techniques providing solutions to such prob- 
lems that are both smooth and accurate, is the Stream- 
line Upwind Petrov Galerkin (SUPG) formulation, 
proposed by Brooks and Hughes [16]. In its original 
form, this was described for use with bilinear elements. 
We wish to take advantage of the greater efficiency 
and geometrical flexibility of biquadratic elements, 

and we make use of recent work by Petera et al. 
[17]. This extends SUPG to isoparametric, biquadratic 
Langrangian elements, and introduces an upwind 
weighting function structure based on that of Brooks 
and Hughes, but incorporating optimal upwind par- 
ameters for biquadratic elements, proposed by Donea 
et al. [IS]. The formulation was tested successfully 
against analytic solutions for a scalar, constant prop- 
erty convection-diffusion problem [ 171. In the present 
work we apply this formulation, for the first time, to 
nonlinear equations involving variable physical prop- 

erties. The resulting finite element equations, cor- 
responding to equation (1) for momentum conser- 
vation, are 

and 

s [PNXN,,,NKU,.+N,,,N,U~K)U~J 
n 

+ AN,, I NJ. I + 2N,. 2N~.2) u u-t P N,. I NJ.+ IJ 

+ PPL(N,.~NJ.~u~J+ N,2N,, ,u dl dQ 
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@a) 

(8b) 

and, corresponding to equation (3) for energy con- 
servation 

s 
[PCNANKNJ, ,u IK+ N,N,,u,,) 

R 

+ k(N,. I NJ. I + NL 2NJ, 2)l dQ TJ 

-k(N,.,,+N,.,,)-(k,,N,,,+k.,N,,,)]dRT, 

Here, the weighting functions in this consistent 
weighted residual statement are (N,+@P,) in equation 

(8) and (N,+ xP,) in equation (9) where N, is the usual 
c” continuous shape function, and 

P, = u,N,,,. 

This part of the function is therefore discontinuous 
across element boundaries, and terms weighted by it 
are evaluated on element interiors, without the appli- 
cation of integration by parts. As a consequence, 
second derivatives of the shape function N, with 
respect to Cartesian coordinates remain in the for- 
mulation. How to evaluate these is not immediately 
obvious, but in previous work [ 171 we have proposed 
convenient, exact formulae for the purpose. An 
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additional complication, not previously considered, 
arises from the variability of the physical properties, 
which leads to the occurrence of Cartesian derivatives 
of viscosity and thermal conductivity in equations (8) 
and (9). These need to be evaluated at integration 

points, and for viscosity we obtain them via the deriva- 
tives with respect to element local coordinates, (5, I?), 

calculated from second-order finite difference for- 
mulae based on the 3 x 3 integration points in the 

biquadratic elements. For example, the 5 derivative 
of viscosity, p,<, at the integration point with local 
coordinates (O,O), is given by 

where & = 0.7745966692, and similarly at other inte- 
gration points, using central or one-sided finite differ- 
ence formulae, as appropriate. The required Cartesian 
derivatives are then calculated from 

where J ’ is the inverse of the Jacobian matrix 

J= 

The upwinding parameter, CD, is constructed by blend- 
ing terms corresponding to the local coordinate com- 
ponents of the velocity vector, as 

where the i, and is are parameters (with dimensions 
of length) evaluated ‘optimally’ as functions of the 

local mesh Reynolds number and element dimensions, 
as explained in ref. [ 171. The parameter x is evaluated 
in a corresponding way, based on mesh Peclet number. 

The nonlinearity of the problem is treated using a 
successive substitution iterative scheme ; the equations 

are linearized using physical property values, and vel- 
ocities in the inertia terms, corresponding to the solu- 

tion obtained in the previous iteration. The procedure 
is started using a Newtonian, isothermal, creeping 
flow solution. Whilst this is a rather low order iter- 

ature scheme, it has been found to be robust for high 
degrees of nonlinearity. 

The linearized finite clement equations are solved 
by the ‘frontal’ method. 

3.3. Implementing thejnite element solutions 
A finite element mesh of the type used in the present 

work is shown in Fig. 6. The results presented in the 
next section were obtained using a somewhat more 
refined mesh, which, on the basis of extensive mesh 
refinement experiments, is believed to provide effec- 
tively converged results. This refined mesh, containing 
5 1 IS nodes, is not shown, since the very small elements 
in some areas would coalesce. The mesh design is 

guided by approximate estimates of the thermal 
boundary layer thickness from classical boundary 
layer theory. with increasing mesh refincmcnt near the 
plate surface, and near leading and trailing cdgcs. 

The stainless steel shim is represented in a single 
layer of very thin elements, wherein the physical prop- 
crties of steel are assigned, and where the source term. 

S(W m ‘), in equation (3) is set to a value representing 
the electrical heating power. Initial results showed. 
not surprisingly, that the use of elements only 0.05 

mm thick (the actual shim thickness) caused numerical 

problems. The thickness of the elements representing 
the shim was therefore increased five-fold, with a five- 
fold reduction in the assigned values of thermal con- 
ductivity and thermal source term, thus maintaining 

the proper flow-direction thermal conduction in the 
shim, and the correct electrical power input. 

Solutions typically required 7 1.5 iterations for con- 

vergence, depending on the degree of nonlinearity- 
increasing importance of the buoyancy term, in par- 
ticular, necessitated larger numbers of iterations. The 
convergence criterion for velocities took the form 

where n is the iteration counter; the corresponding 

criterion for nodal temperatures was also applied. 

4. DISCUSSION AND CONCLUSIONS 

The work reported here covers an extension and 
refinement of that presented at a recent conference 
[19]. The experimental programme, which is reported 
in detail elsewhere [9] included 1 I6 experimental deter- 

minations of temperature profiles along the plate and 
covered the use of three Newtonian fluids (an aqueous 
CMC solution and glycerolLwater mixtures of 67.5 
and 63.9 w/w concentrations) and one shear-thinning 
fluid (aqueous Carbopol) with a power-law index of 
approximately 0.5. Approach velocities ranged from 
0.018 to 0.26 m s ’ (14 x variation) and heat fluxes 
from 0. IO to 20.7 kW m ’ (207 x ). 

Numerical solutions of the coupled flow and heat 
transfer problem were carried out to give plate tem- 
perature profiles for the conditions applying in seven 
experiments, which were representative of those in the 
overall programme. In this way, it was possible to 
make a direct comparison of computed and measured 
temperatures. Results are given in Figs. 7-13, from 
which it is seen that the agreement is such as to give 
a high degree of confidence in both the experimental 
and the computational procedures. Reference should 
be made to Table 4 for experimental conditions. In 
Figs. 7-9, two computed curves arc shown--one for 
combined forced and natural convection and the other 
for forced convection alone (i.e. with the buoyancy 
effects arising from density variations neglected). As 
would be expected, the effects of buoyancy are greatest 
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at high heat fluxes and lower plate Reynolds numbers, 
and closer agreement with the experimental results 
is obtained if the effects of naturaf convection are 
included. In order to assess the magnitude of the over- 
all effect of variations of physical properties, tem- 
perature profiles were also computed in one experi- 
ment (Fig. I3), on the assumption that all properties 
remained equal to those at the approach temperature. 
The results indicate the importance of taking these 
variations into account in the computations. 

A further set of curves included in Figs. 7-13 gives 
the value of the local heat transfer coefficient h. 

Although the plate heat transfer element was nomin- 
ally of the constant heat flux type, there were local 
variations of normal heat flux at the surface due to the 
conduction of heat through the foil in the upstream 
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direction, this effect being greatest near the leading 
edge where (?T/Zx, was a maximum. Excluding regions 
within about 1 mm of the leading and trailing edges, 
the maximum variation in surface normal heat flux 
was approximately 5%. 

The local values of heat transfer coefficients given 
in Figs. 7-13 were therefore computed as 

h = -~.- Local heat flux normal to surface __...~. . .~._. 
Difference between surface and bulk temperatures 

T. - Ta,,p 

where sufiix s refers to the condition at the surface. 
For the Newtonian fluids the computed values of the 
local heat transfer coefficient were then examined in 

Oh 0.04 0.06 0.08 0.a 

x(m) 

FIG. 10. Experimental a, computed temperature profiles - 
and local heat transfer coefficients (experiment 65). 
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FIG. 11. Experimental l , computed temperature profiles - 
and local heat transfer coefficients (experiment SO). 

terms of local Nusselt number as a function of local 
Reynolds number, using the physical property values 
appiicable to the approach temperatures. It was not 
possible to correlate the results for the various fluids 
used in the experiments by means of a single value of 
the Prandtl number in each case, because of the point- 
to-point variations attributable to the temperature- 
dependence of physical properties. However, in order 
to obtain a general comparison of the results for 
different systems, a simple function of Prandtl number 
was employed, Pr li3, in which physical property values 
are evaluated at the approach temperature. The 
results for the non-Newtonian fluids were excluded 
from the correlation because of the even greater 
difficulty in relation to the appropriate definition of a 
relevant Prandtl number. 

In view of the fact that logarithmic plots of flu,, vs 
Re,, were approximately linear for all x,-positions, 

0’ I 
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x (ml 
FIG. 12. Experimental l , computed temperature profiles ~ 

and local heat transfer coefficients (experiment 94). 
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FOG. 13. Experimental 0, computed temperature profiles- 
and local heat transfer coefficients (experiment 101). Broken 

line-all physical properties assumed constant. 

except those very near to the leading and trailing 
edges, it was then possible to express the results for 
each experiment in the form 

Nu,, = KRe,,” Pr”3. 

The values of K and m are given in Table 4. 

(10) 

In Fig. 14, a logarithmic plot of Nu,, Pr- ‘;3 vs Re,, 

is shown for each of the Newtonian fluids for which 
computed results have been obtained. In addition, the 
fine representing results predicted from the equation 
based on the simple boundary layer theory is shown. 
For the constant heat flux condition, this is 

Nu,~ = 0.451 Re,y,‘!2 Prii3. (11) 

The slope of this line is somewhat smaller than that 
for the computed lines, being 0.5 compared with -0.6. 

Although the form of the function describing the 
computed results is similar to that predicted by the 
boundary layer theory, the numerical values of the 
Nusselt numbers differ by a factor of up to 3. This 
underlines the need for computations in circumstances 
where the Reynolds numbers are low and where local 
values of physical properties are sufficiently influenced 
by temperature to differ significantly from those of 
the approach fluid. It should be borne in mind that 
the numerical values of heat transfer coefficient which 
have been computed refer only to the particular 
geometry of the heat transfer element used in this 
work. Even for the plane surface, it would be necess- 
ary to include some function of the plate thickness in 
the correlation above, in order to allow the results to 
be applied more generally; also, to acmunt for the 
effects of physical property variations (particularly the 
temperature-dependence of viscosity and buoyancy 
effects arising from density variations), further 
groups would be necessary. In view of this complexity, 
and the specialized geometry of the problem, no 
attempt has been made to develop the correlation 
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Table 4. Values of exponent m and coefficient K in equation (IO), with experimental conditions 

Experiment No. Material 

Approach 
velocity 
(m s’) 

Plate Prandtl 
Heat flux No. 
(kW m ‘) PI ,,I K 

I Aqueous CMC 
33 Aqueous CMC 
47 Aqueous CMC 
65 67.5% Glycerol 
80 63.7% Glycerol 
94 Carbopol 5 

101 Carbopo16 
Boundary layer theory General 

0.0179 
0.0524 
0.0959 
0.0458 
0.1150 
0.0791 
0.1030 

t Metzner and Reed Reynolds Number for Carbopols 

-3 -2 -1 0 1 i 3 

Log Rex, 

Frc;. 14. NM,, Pr~“vs Re,, correlations. 

further. The numerical method provides the means 

for obtaining accurate details of the heat transfer pro- 
cess in this and many other geometries. 

It should be stressed that, so far as the authors are 
aware, the present work is the first in which the SUPG 

finite element formulation has been applied, on iso- 
parametric biquadratic elements, to a problem with 
variable physical properties. In view of the fact that 
the SUPG formulation for nonlinear, multi- 
dimensional problems is based on a heuristic exten- 
sion of theoretical results derived for simplified one- 

dimensional cases [ 171, the present agreement between 
computation and experiment provides particularly 
valuable reassurance as to the success of the for- 
mulation in providing accurate, stable results. 
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